
Computer and Information Sciences

Northeastern University - Seattle

Ian Gorton

College of Computer and Information Science

Program Design Principles – PDP CS5010

Week 1 – Introduction to PDP

• Aims of PDP

• Logistics of PDP

• Class exercise and discussion

• Design by Contract

Overview

Course Primary Aims

• At the end of this course you should be able to:

– Design and build high quality software

– Explain the major principles of the ‘art of

programming’

– Write understandable code

– Be able to explain your design and code to your

peers

• You will also:

– Have advanced knowledge and skills in Java,

including Java 8.0 features

– Be able to write concurrent Java programs

– Have experience with a number of widely used Java

components

Course Secondary Aims

5

• High quality software should be:

– Correct

– Comprehensible

– Modifiable

High Quality Software

6

• Meet functional requirements

– Pass test cases

• Programming is not math

– No one answer

• But there are good ones and bad ones ☺

– No single design method or approach

• Programming is a design exercise

– Apply design principles

– Apply best practices such as design patterns

– Justify and explain your thinking

7

Correct

8

• Your code has two equally important audiences:

– CPU and systems

– Other engineers

• Your code should be

– Easy for others to understand

– Well documented

• This will be tested in walkthroughs

– You’ll need to explain your design and code to TAs and

Professors

Comprehensible

9

10

11

12

13

• Software systems always change and evolve

– Your code should be comprehensible so other

engineers can use and modify it

• Design principles make it possible to build

modifiable software

– But there are always trade-offs

– Some changes are easier to make than others

• And some will be hard/impossible

– The art of design is to anticipate likely/most common

changes and accommodate those

Modifiable

14

15

16

The end goal – Software Engineer

9/6/2017 01-17

Software Engineering and

Practice
• Good software is not just the right output.

• Many other goals exist.

• "Software engineering" promotes the creation of good software, in all its

aspects

– Directly code-related: class and method design

– Externally: documentation, style

– Some of it is higher-level: system architecture

• Software quality is important in this class AND in the profession

18

19

Some modern languages

Procedural languages: programs are a series of commands
Pascal (1970): designed for education
C (1972):low-level operating systems and device drivers

Object-oriented languages: programs use interacting "objects"

C++ (1985):"object-oriented" improvements to C

Java (1995):

• Designed for embedded systems, web apps/servers

• Runs on many platforms (Windows, Mac, Linux, cell

phones...)

21

https://spectrum.ieee.org/ns/IEEE_TPL_2017/index/2017/1/0/0/1/1/50/1/50/1/50/1/30/1/30/1/30/1/20/1/20/1/5/

1/5/1/20/1/100/

https://spectrum.ieee.org/ns/IEEE_TPL_2017/index/2017/1/0/0/1/1/50/1/50/1/50/1/30/1/30/1/30/1/20/1/20/1/5/1/5/1/20/1/100/

9/6/2017 01-22

Object Oriented Principles

• Abstraction

• Encapsulation

Object’s data cannot be accessed

directly from outside the object

• Inheritance - “Is-a” relationship

• Polymorphism – objects with the same

specification have different implementation

PDP LOGISTICS

23

• We will be using Java

• Next week – Whirlwind Tour of Java

– After that we assume Java competence

• Advanced OO Design Principles and Patterns

• Data Structures and Algorithms

• Concurrency

• Functional programming

• Networking and distribution

Content Overview

24

https://cs5010pdp2017fall.github.io/

Web Site

25

• Each lecture will be a mix of presentation and

class exercises

• We’ll expect you to have done the

recommended reading associated with each

week

Lectures

26

• 9 programming assignments

– 6x1 week

– 3x2 weeks (these are obviously harder!)

• First 4 assignments are solo

• Last 5 are in pairs

– We choose the partners ☺

Assignments

27

• Code submission due Mondays at 6pm on weeks

of deadlines

• Tuesday – walkthroughs held where you explain

your code to TAs/Professors

• Logistics for walkthroughs coming soon

Assessment

28

• 30% - correctness

– Pass tests

– Produce correct output

• 20% - presentation of solution

• 50% - design

• See web site for specifics.

Assessment Grade

29

Professors – You have 4 ☺

30

Ian

Adrienne

Tamara

Maria

And many TAs …..

31

CLASS EXERCISE

32

Vivino.com

33

• Database of knowledge about wine worldwide

– Wine producers

– The wines they produce

– Retailers that sell each wine

– Classification of all wines into ~250 categories

• Users rate wines they drink

– Rating and comments

– Other users can ‘Like’ ratings

– Users can follow others (followed by/followers)

– Users get rankings based on number of reviews

Vivino

34

• In groups of 2 or 3, discuss:

– What are the major abstractions in this problems

domain

• E.g. Classes

– How are they are related?

• Associations/compositions

• Dependencies (one way/two way?)

• Remember – this is a client server app

– Server lives ‘in the cloud’, shared by ….

– (Typically) mobile client apps

Exercise

35

DESIGN BY CONTRACT

36

• Small programs (e.g a

few hundred LoCs)

– Easy to write

– Easy to fully

understand

– Easy to change

• Big programs (e.g. 1

million LoCs)

– Hard to write

– Impossible to fully

understand

– Hard to change

Programming ‘in the Small’ versus ‘in the large’

37

38

• A seemingly simple change leads

to many unexpected changes

• The parts of the programs are

dependent upon each

– Change one, must change many

– Tightly coupled

• The number of

interactions/dependencies makes

code unmanageable

The Ripple Effect

39

40

• Decompose the problem into parts

– Modules, packages, classes, components, etc

• Create minimal dependencies between the

parts

– Loosely coupled, limit ripple effect

• Dependencies based on specifications

– Hide implementation details from other parts

– Details can change as long as specification not

violated

Modularity

41

• Defines a contract between a ‘using’ class

and a ‘used’ class

– E.g client, server

• Describes expectations of each other

– What data the client must pass to the server

– What effects passing the expected data will have

on the server

– What the server will return to the client

– What conditions can be guaranteed to hold after

the request is complete

Specification

42

• Code is complicated!!

– And changes

• Specification concisely tells the client what the

code does, not how it does it

• Specification abstracts away unnecessary

details

– Easy to understand, clear and unambiguous

– Specifies what the client can always depend on

when using the module

Why not just read the code?

43

• Preconditions of the module

– What conditions the module requests from its clients

– Check upon entry to module

• Postconditions of the module

– What guarantees the module gives to clients

– What conditions must hold for all objects of this

module if implemented correctly

Elements of a contract

44

• Precondition violation

– Blame the client

• Postcondition violation

– Blame the server

– In reality we have a bug

Violations

45

• Push(T t)

– Precondition: stack is not full

– Postcondition: numElem = numElem’+1

– Stack[numElem] = t

– numElem >= 0 and <= max

• T Pop()

– Precondition: stack is not empty

– Postcondition: numElem =numElem’-1

– Postcondition: Returns Stack[numElem’]

– numElem >= 0 and <=max

Example – A fixed size stack

46

Module Invariant

• Preconditions

– Upon module entry

• Or as early as feasible

– Throw an exception if violated

• Postconditions

– Just before returning

– Violations indicate errors in the module

• Useful for debugging

• In production?

When to check?

47

• Javadoc can be used for writing specification

– Method signature

– Text description of method

– @param: description of what gets passed in

– @return; description of what gets returned

– @throws: exceptions that may occur

Using Javadoc

48

http://www.oracle.com/technetwork/articles/

java/index-137868.html

/**

* Returns an Image object that can then be painted on the screen.

* The url argument must specify an absolute {@link URL}. The name

* argument is a specifier that is relative to the url argument.

* <p>

* This method always returns immediately, whether or not the

* image exists.

*

* @param url an absolute URL giving the base location of the image

* @param name the location of the image, relative to the url argument

* @return the image at the specified URL

*/

public Image getImage(URL url, String name) {

try {

return getImage(new URL(url, name));

} catch (MalformedURLException e) {

return null;

}

}

Example

49

• @precondition: specify all obligations on the

client. These must hold before method call

• @postcondition: specify conditions that must hold

at end of method for correct execution

To specify a contract, we’ll add …

50

static void listAdd(List lst1, List lst2)

@precondition: lst1 and lst2 are non-null.

@precondition: lst1 and lst2 are the same size.

@postcondtion: lst1[i] = lst1[i] + lst2[i]

@return none

Example (not correct Javadoc for brevity)

51

Public class Vivino {

public Credentials login(String user, String pwd) {}

public WineList getMyWines (Credentials user) {}

public Receipt buyWines(WineList selectedWines) {}

public bool payForWine(CreditCard cc) {}

}

One for you ….

52

• Get your Java IDE environment configured

• Become a Java expert

– You have a week ☺

– Your bedtime reading

• Joshua Bloch, Effective Java 2nd Edition

What Next

53

• First assignment released on Friday

• Lecture next week – Whirlwind Java tour

• First assignment deadline:

– Monday 6pm Sept 18th

• First Walkthroughs

– Tuesday 19th Sept

– Time slots all day, sign up ‘sheet’ coming soon

What Next (2)

54

55

